
ENDOCRINE PROBLEMS

DISORDERS OF THE ANTERIOR PITUITARY

- ★ Growth hormone (GH)
 - + Promotes protein synthesis
 - + Mobilizes glucose & free fatty acids
 - + Overproduction almost always caused by benign tumor (adenoma)

GIGANTISM

- ★ In children excessive secretion of GH
- Occurs prior to closure of the epiphyses & long bones still capable of longitudinal growth
- **★** Usually proportional
- May grow as tall as 8 ft& weigh >300 lb

ACROMEGALY

- In adults excessive secretion of GH stimulates IGF-1 (Liver).
 NO negative feedback with tumor.
- Overgrowth of bones & soft tissues
- Bones are unable to grow longer—instead grow thicker & wider
- ★ Rare—3 out of every million
- × M=F

CONTINUED CLINICAL MANIFESTATIONS

- Visual disturbances & HA from pressure of tumor
- * Hyperglycemia
- Predisposes to atherosclerosis
- Untreated causes angina, HTN, It ventricular hypertrophy, cardiomegaly

PROGRESSION OF ACROMEGALY

PROGRESSION OF ACROMEGALY

- ★ Removal of tumor transsphenoidal approach
- Hypophysectomy removal of entire gland with lifetime hormone replacement

★ Head frame for stereotactic radiosurgery

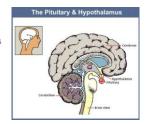
TREATMENTS

- Drug therapy
 - + Somatostatin analogs
 - \times Octreotide (Sandostatin)—given SQ 2-3 x weekly
 - + Dopamine agonist
 - × Cabergoline (Dostinex)—tried first due to low cost, but not as effective
 - + GH receptor antagonists
 - × Pegvisomant (Somavert)—not for primary tx—does not act on tumor

TREATMENTS

★ Somatropin (Omnitrope)—GH for long-term replacement—given daily SQ @ HS

REVIEW QUESTION


- A person suspected of having acromegaly has an elevated plasma GH Level. In acromegaly, one would also expect the person's diagnostic results to include:
 - + A. Hyperinsulinemia
 - + B. A plasma glucose of less than normal.
 - + C. Decreased GH levels with an oral glucose challenge test
 - + D. A serum somatomedin C (IGF-1) of higher than normal

ANSWER

x d. A nI response to GH secretion is stimulation of the liver to produce somatomedin C, or insulin-like growth factor-1 (IGF-1), which stimulates growth of bones & soft tissues. The increase levels of somatomedin C normally inhibit GH, but in acromegaly, the pituitary gland secretes GH despite elevated IGF-1 levels. When both GH & IGF-1 levels are increased, overproduction of GH is confirmed. GH also causes elevation of blood glucose, & normally GH levels fall during an oral glucose challenge but not in acromegaly.

HYPOFUNCTION OF PITUITARY GLAND

- * Hypopituitarism
 - + Rare disorder
 - + Decrease of one or more of the pituitary hormones
 - + Secreted by post pit:
 × ADH, oxytocin
 - + Secreted by ant pit:
 - × ACTH, TSH, folliclestimulating (FSH) luteinizing hormone (LH), GH & prolactin

ETIOLOGY & PATHOPHYSIOLOGY

- Causes of pituitary hypofunction
 - + Tumor (most common)
 - + Infections
 - + Autoimmune disorders
 - + Pituitary infarction (Sheehan syndrome)
 - + Destruction of pituitary gland (radiation, trauma, surgery)
- Deficiencies can lead to end-organ failure

CLINICAL MANIFESTATIONS

- ★ Tumor
 - + Space- decrease peripheral vision or acuity, anosmia (loss of sense of smell), seizures
- GH deficiency
 - + Decreased muscle mass, truncal obesity, flat affect
- * FSH & LD deficiencies
 - + Menstrual irregularities, dec libido, changes sex characteristics

- * ACTH & cortisol deficiency
 - + Fatigue, weakness, dry & pale skin, postural hypotension, fasting hypoglycemia, poor resistance to infection
- Men with FSH & LD deficiencies
 - + Testicular atrophy, dec spermatogenesis, loss of libido, impotence, dec facial hair & muscle mass

SYNDROME OF INAPPROPRIATE ANTIDIURETIC HORMONE (SIADH)

- ★ Overproduction of ADH or arginine vasopressin (AVP)
- Synthesized in the hypothalamus
- Transported & stored in the posterior pituitary gland
- Major role is water balance & osmolarity

PATHOPHYSIOLOGY OF SIADH

- ★ Increased antidiuretic hormone (ADH)→
- Increased water reabsorption in renal tubules →
- ★ Increased intravascular fluid volume →
- Dilutional hyponatremia & decreased serum osmolality

SIADH

- ADH is released despite normal or low plasma osmolarity
- x S/S:
 - + Dilutional hyponatremia
 - + Fluid retention
 - + Hypochloremia
 - + NI renal function, <U/0
 - + Concentrated urine
 - + Serum hypoosmolality
- ★ S/S: cerebral edema, lethargy, confusion, seizures, coma

CAUSES OF SIADH

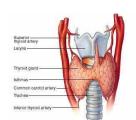
- * Malignant Tumors
 - + Sm cell lung CA
 - + Prostate, colorectal, thymus CA
 - + Pancreatic CA
- * CNS Disorders
 - + Brain tumors
 - + Lupus
 - + Infections: meningitis
 - + Head injury: skull fx, subdual hematoma

- * Misc conditions
 - + HIV
 - + Lung infection
 - + hypothyroidism
- * Drug therapy
 - + Oxytocin
 - + Thiazide diuretics
 - + SSRIs
 - + Tricyclic antidepressants
 - + opioids

DIAGNOSTIC STUDIES & TREATMENT

- Simultaneous measurements of urine and serum osmolality
- x Na <134 mEq/L
- ★ Urine specific gravity > 1.005
- Serum osmolality < 280 m0sm/kg (280 mmol/kg)</p>
- * Treatment
 - + Treat underlying cause
 - + Restore nl fluid volume & osmolality
 - + Restrict fluids to 800-1000cc/day if Na >125 mEq/L & Lasix
 - + Serum Na <120 mEq/L, seizures can occur, tx with hypertonic Na+ solution (3%-5%) slowly

DIABETES INSIPIDUS (DI)


- Deficiency of production or secretion of ADH OR a decreased renal response to AHD
- ★ Results in fluid & electrolyte imbalances
- × Types of DI
 - + Central DI (neurogenic DI)
 - + Nephrogenic DI

PATHOPHYSIOLOGY OF DI

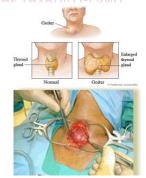
- x Decreased ADH→
- Decrease water absorption in renal tubules →
- ★ Decreased intravascular fluid volume →
- ★ Excessive urine output resulting in increased serum osmolality (hypernatremia)

THYROID GLAND DISORDERS

Thyroid hormones (T3 & T4) regulate energy metabolism and growth and development

THYROID ENLARGEMENT

- ★ Goiter—hypertrophy & enlargement of thyroid gland
- ★ Caused by excess TSH stimulation
- Can be caused by inadequate circulating thyroid hormones


THYROID ENLARGEMENT

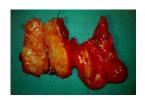
- ★ Found in pts with Graves' disease
- Persons that live in a iodine-deficient area (endemic goiter)
- Surgery is used to remove large goiters

ENLARGEMENT OF THE THYROID GLAND

- ★ TSH & T4 levels are used to determine if goiter is associated with hyper-/hypo- or normal thyroid function
- Check thyroid antibodies to assess for thyroiditis

TREATMENT OF NODULES

- × US
- × CT
- × MRI
- Fine-needle aspiration (FNA)—one of the most effective methods to identify malignancy
- Serum calcitonin (increased levels associated with CA)


THYROIDITIS

- * Inflammation of thyroid
- Chronic autoimmune thyroiditis (Hashimoto's disease)—nl tissue replaced by lymphocytes & fibrous tissue
- × Causes
 - + Viral
 - + Infection bacterial
 - + Fungal infection

DX STUDIES & MANAGEMENT OF THYROIDITIS

- × Dx studies
 - + T3 & T4 initially elevated and then may become depressed
 - + TSH levels are low and then elevated
 - + TSH high & dec hormone levels in Hashimoto's thyroiditis

TREATMENT OF THYROIDITIS

- * Recovery may take weeks or months
- * Antibiotics or surgical drainage
- × ASA or NSAIDS—if doesn't respond in 50 hours, steriods as used
- * Propranolol (Inderal) or atenolol (Tenormin) for elevated heart rates
- * More susceptible to Addison's disease. pernicious anemia. Graves' disease, gonadal failure

HYPERTHYROIDISM

Thyroid and Parathyroid Glands

- * Hyperactivity of the thyroid gland with sustained increased in synthesis & release of thyroid hormones
- x M>W
- **★** Peaks in persons 20-40 yrs old
- * Most common type is Graves' disease

GRAVES' DISEASE

- * Autoimmune disease
- × Unknown etiology
- **x** Excessive thyroid secretion & thyroid enlargement
- * Precipitating factors: stressful life events. infection, insufficient iodine supply
- * Remissions & exacerbations
- * May progress to destruction of thyroid tissue
- **x** 75% of all hyperthyroidism cases
- × Pt has antibodies to TSH receptor

TOXIC NODULAR GOITERS

- * Function independent of * M=W TSH stimulation
- * Toxic if associated with hyperthyroidism
- * Multinodular goiter or solitary autonomous nodule
- × Benign follicular adenomas

- ★ Seen peak >40 yr of age
- ★ Nodules >3 cm may result in clinical disease

CLINICAL MANIFESTATIONS

- * Bruit present
- Ophthalmopathy—abnl eye appearance or function
- * Exophthalmosprotrusion of eyeballs from orbits-20-40 % of
- × Usually bil, but unilateral or asymmetric

CLINICAL MANIFESTATIONS

- * Weight loss
- × Apathy
- **x** Depression
- * Atrial fibrillations
- **x** Confusion
- * Increased nervousness

DIAGNOSTIC STUDIES

- x TSH-decreased
- Elevated free T4 (free is the form of hormone that is biologically active)
- RAIU (radioactive iodine uptake) test—Graves' uptake 35-95%; thyroiditis uptake < 2%)</p>
- × ECG
- Ophthalmologic examination
- * TRH stimulation tests

COLLABORATIVE CARE

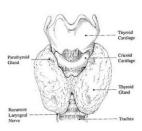
- ★ Goal: block adverse effects of hormones & stop oversecretion
- v lodine: used with other drugs to prepare for OR or tx of crisis—1-2 wks max effect
- * Antithyroid drugs:
 - + Propylthiouracil (PTU) has to be taken TID
 - + Methimazole (Tapazole)

- Total or subtotal thyroidectomy
- ★ B-adrenergic blockers symptomatic relief
 - + Propranolol (Inderal)
 - + Atenolol (Tenormin)—used in pts with heart disease or asthma

COLLABORATIVE CARE

- * Radioactive lodine
 Therapy—treatment of
 choice for non-pregnant
 women; damages or
 destroys thyroid tissues;
 max effect seen in 2-3
 months; post
 hypothyroidism seen in
 80% of patients
- * Nutritional therapy:
 - + High-calories: 4000-5000 kcal/day
 - + Six meals a day
 - + Snacks high in carbs, protein
 - + Particularly Vit A, B6, C & thiamine
 - + Avoid caffeine, high-fiber, highly seasoned foods

HYPOTHYROIDISM


- Common medical disorder in US
- Insufficient circulating thyroid hormone
- Primary—related to destruction of thyroid tissue or defective hormone synthesis
- **x** Can be transient
- Secondary—related to pituitary disease or hypothalamic dysfunction
- Most common cause iodine deficiency or atrophy thyroid gland (in US)
- May results from tx of hyperthyroidism
- ★ Cretinism hypothyroidism in infancy

HYPOTHYROIDISM

- Cretinism hypothyroidism that develops in infancy
- All newborns are screened at birth for hypothyroidism

CLINICAL MANIFESTATIONS

- S/S vary on severity of deficiency, age onset, patient's age
- Nonspecific slowing of body processes
- S/S occur over months or vears
- * Long-termed effects more pronounced in neurologic, GI, cardiovascular, reproductive & hematologic sytems

CLINICAL MANIFESTATIONS

- × Fatigue
- × Lethargy
- × Somnolence
- * Decreased initiative
- Slowed speech
- * Depressed appearance
- * Increased sleeping
- × Anemia

CLINICAL MANIFESTATIONS

- Decreased cardiac output
- Decreased cardiac contractility
- * Bruise easily
- **x** Constipation
- **x** Cold intolerance
- * Hair loss
- * Dry, course skin

- × Weight gain
- × Brittle nails
- Muscle weakness & swelling
- * Hoarseness
- * Menorrhagia
- Myxedema—occurs with long-standing hypothyroidism

CLINICAL MANIFESTATIONS

- × Puffiness
- × Periorbital edema
- Masklike effect
- * Coarse, sparse hair
- × Dull, puffy skin
- * Prominent tongue

MORE MYXEDEMA

COMPLICATIONS OF HYPOTHYROIDISM

- * Myxedema coma:
 - + Medical emergency
 - + Mental drowsiness, lethargy & sluggishness may progress to a grossly impaired LOC
 - + Hypotension
 - + Hypoventilation
 - + Subnormal temperature

TESTING & TREATMENT

- x Serum TSH is high
- × Free T4
- ★ Hx & physical
- ★ Cholesterol (elevated)
- * Triglycerides (elevated)
- **x** CBC (anemia)
- × CK (increased)

- ★ Levothyroxin (Synthroid)
 - + Levels are checked in 4-6 wks and dosage adjusted
 - + Take meds regularly
 - + Lifelong treatment
 - + Monitor pts with CAD
 - + Monitor HR & report to HCP >100 bpm
 - + Promptly report chest pain, weight loss, insomnia, nervousness

EXPECTED OUTCOMES

- Adhere to lifelong therapy
- Have relief from symptoms
- Maintain an euthyroid state as evidenced by nl TSH levels
- ★ Severe myxedema of leg→→→→→→→→

DISORDERS OF THE ADRENAL CORTEX

- Main classifications of adrenal cortex steriod hormones:
 - + Mineralocorticoid
 - × Regulates K+ & sodium balance
 - + Androgen
 - × Contribute to growth & development in males/females & sexual activity in adult women
 - + Glucocorticoid
 - × Cortisol is primary one
 - regulate metabolism, increase glu levels, critical in physiologic stress response

CUSHING SYNDROME

- Caused by excess of corticosteriods, more specifically: glucocorticoids
- * Hyperfunction of adrenal cortex
- **x** Women>Men
- × 20-40 yrs age group

- **x** Other causes:
 - + ACTH-secreting pituitary tumor (Cushing's disease)
 - + Cortisol-secreting neoplasm in adrenal cortex
 - + Prolonged high doses of corticosteriods
 - + CA of lungs or malignant growth

CLINICAL MANIFESTATIONS OF CUSHING

- * Thin, fragile skin
- * Poor wound healing
- * Acne-red cheeks
- ➤ Purplish red striae
- **x** Bruises
- Fat deposits on back of neck & shoulders (buffalo hump)

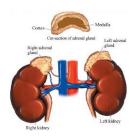
Figure 4-18B, Page 4.10

CLINICAL MANIFESTATIONS OF CUSHING

- ★ Thin extremities with muscle atrophy
- × Pendulous abd
- ★ Ecchymosis—easy bruising
- * Weight gain
- Increased body & facial hair
- * Supraclavicular fat pads

CLINICAL MANIFESTATIONS OF CUSHING

- Rounding of face (moon face)
- * HTN, edema of extremities
- ★ Inhibition of immune response
- * Sodium/water retention
- ★ This infant had a 3 pound weight gain in 1 day → →



DIAGNOSTIC STUDIES FOR CUSHING

- ★ 24-hr urine for free cortisol (50-100 mcg/day)
- Plasma cortisol levels may be elevated
- High-dose dexamethasone suppression test (falsepositive results with depression, acute stress, active alcoholics)
- * CBC-leukocytosis
- ★ CMP—hyperglycemia, hypokalemia
- * Hypercalciuria
- × Plasma ACTH level
- * History and physical

TREATMENT OF CUSHING SYNDROME

- ★ Adrenalectomy (open or laparoscopic)
- ★ If caused by steriod tx, taper & discontinue
- Drug therapy:
 - + Metyropone
 - + Mitotane (Lysodren)— "medical adrenalectomy"
 - + Ketoconazole (Nizoral)
 - + Aminoglutethimide (Cytadren)

HYPOFUNCTION OF ADRENAL CORTEX— ADDISON'S DISEASE

- All 3 classes of adrenal corticosteriods are reduced
- Most common cause is autoimmune response
- Other causes: AIDS, metastatic cancer, TB, infarction, fungal infections
- ★ M=W (JFK had Addison's)
- ★ Occurs in <60 yrs of age</p>

CLINICAL MANIFESTATIONS OF ADDISON'S

- Bronzed or smoky hyperpigmentation of face, neck, hands (esp creases), buccal membranes, nipples, genitalia
- * Anemia, lymphocytosis
- **x** Depression
- × Delusions

CLINICAL MANIFESTATIONS OF ADDISON'S

- * Fatigability
- Tendency toward coexisting autoimmune diseases
- N/V/D, abd pain
- * Hypotension
- × Vasodilation
- × Weight loss
- Hyponatremia, dehydration

DIAGNOSTIC STUDIES & TREATMENT

- x CT scan
- × MRI
- * ACTH-stimulations test
- History & physical
- * Plasma cortisol levels
- × Serum electrolytes
- × CBC
- ★ Urine for free cortisol (will be low)
- Q day glucocorticoid (hydrocortisone) replacement (2/3 upon awakening & 1/3 in evening)
- Salt additives for excess heat or humidity
- **x** Daily mineralocorticoid in the am
- Increased doses or cortisol for stress situations (OR, hospitalizations)

SIDE EFFECTS OF CORTICOSTEROIDS

- ★ Hypocalcemia R/T antivitamin D effect
- ★ Weakness & skeletal muscle atrophy
- ★ Predisposition to peptic ulcer disease (PUD)
- * Hypokalemia
- Mood & behavior changes

- × Predisposes to DM
- * Delayed healing
- ★ HTN→predisposes to heart failure
- ★ Protein depletion predisposes to pathologic fx esp compression fx of vertebrae

COMPLICATIONS OF STERIOD THERAPY

- Steriods taken for longer than 1 week will suppress adrenal production
- ★ Always wean steriods, do not abruptly stop
- ★ Take early in the am with food

